Première spécialité

PROGRAMME DE PREMIERE (Spécialité)

B.O. spécial n°1 du 22 janvier 2019
Programme en vigueur depuis 2019

LE PROGRAMME DE LA SPÉCIALITÉ MATHÉMATIQUES

B.O. spécial n°1 du 22 janvier 2019
Programme en vigueur depuis 2019

LE PROGRAMME DE LA SPÉCIALITÉ MATHS

B.O. spécial n°1 du 22 janvier 2019
Programme en vigueur depuis 2019

Algèbre

Mohammed Al Khwarizmi

Branche des mathématiques qui, dans sa partie classique, se consacre à la résolution par des formules explicites des équations algébriques et, dans sa partie moderne, étudie des structures (groupes, anneaux, corps, idéaux) et se prolonge par les algèbres linéaire et multilinéaire et par l’algèbre topologique.

Mohammed Al Khwarizmi est un mathématicien, astronome, astrologue et géographe perse. Il décrit les méthodes de résolution des équations du premier et du second degré en les séparant en plusieurs cas. Il en fait état dans son ouvrage Kitab al jabr . . . , qui a donné son nom au mot algèbre. Il est aussi à l’origine du mot algorithme grâce à son livre Algoritmi qui explique le maniement de la numération indienne.

Suites Numériques

Augustin Louis, baron Cauchy (21 août 1789 – 23 mai 1857)

Suites Arithmétiques

Dirichlet, Pierre Gustav Lejeune ( 13 février 1805 – 5 mai 1859)

Suites Géométriques

Johann Carl Friedrich Gauss (30 avril 1777 – 23 février 1855)

Second degré

George Boole (02 novembre 1815 – 08 décembre 1864)
Isaac_Newton
Isaac Newton

Analyse

Dans l’Antiquité et au Moyen Âge respectivement, les mathématiciens grecs et indiens se sont intéressés à l’infinitésimal et ont obtenu des résultats prometteurs mais fragmentaires.

L’analyse moderne a émergé au XVIIe siècle avec le calcul infinitésimal d’Isaac Newton et de Gottfried Wilhelm Leibniz.

Gottfried_Wilhelm_Leibniz
Gottfried Wilhelm Leibniz

Dérivation locale

Jean Le Rond d’Alembert (16 novembre 1717 – 29 octobre 1783)

Dérivation globale

Joseph Louis de Lagrange (25 janvier 1736 – 10 avril 1813

La fonction esponentielle

John Napier, plus connu sous le nom Jean Neper (01 février 1550 – 04 avril 1617)

Fonctions trignométriques

Hipparque, de Nicée (v. 190 av. J.-C. –  v. 120 av. J.-C.)

Géométrie

Calcul vectoriel et produit scalaire

William Kingdon Clifford (04 mai 1845 – 03 mars 1879)

L’expression produit scalaire apparaît pour la première fois dans une publication scientifique dans un livre de William Kingdon Clifford daté de 1878. Cette paternité est néanmoins remise en cause par M. J. Crowe, pour qui le travail de Clifford est une transition entre l’algèbre des quaternions décrite par Hamilton et la formalisation des espaces vectoriels.

Euclide est un mathématicien grec considéré comme le père de la géométrie. Il est présumé né à Athènes vers 330 avant notre ère. Il étudia tout d’abord à « l’école des successeurs de Platon » dans sa ville natale. Puis il fut invité par Ptolémée Ier à la grande « école d’Alexandrie » en Égypte. Il y dirigea une équipe de mathématiciens. Il serait mort à Alexandrie (Égypte) vers 265 avant J.-C.il a inventé les divisions euclidiennes.

Géométrie repérée

Thalès de Milet (640-546 av. J.-C.)

Bien qu’Euclide soit souvent considéré comme le père de la géométrie, cette distinction revient en toute équité à Thalès (640-546 av. J.-C.) qui étudia la géométrie trois siècles avant Euclide.

Probabilités et statistiques

Probabilités conditionnelles et indépendance

Thomas Bayes C’est à une œuvre de Thomas Bayes (1702-1761), publiée à titre posthume, que l’on doit la première théorie sur les probabilités conditionnelles. Extrait du livre de Moivre, The Doctrine of Chances, 1718.

Variables aléatoires réelles

L’apparition de la notion de « risque », préalable à l’étude des probabilités, n’est apparue qu’au XIIe siècle pour l’évaluation de contrats commerciaux avec le Traité des contrats de Pierre de Jean Olivia.